Canard Explosion and Relaxation Oscillation in Planar, Piecewise-Smooth, Continuous Systems
نویسنده
چکیده
Classical canard explosion results in smooth systems require the vector field to be at least C, since canard cycles are created as the result of a Hopf bifurcation. The work on canards in nonsmooth, planar systems is recent and has thus far been restricted to piecewise-linear or piecewise-smooth Van der Pol systems, where an extremum of the critical manifold arises from the nonsmoothness. In both of these cases, a canard (or canard-like) explosion may be created through a nonsmooth bifurcation as the slow nullcline passes through a corner of the critical manifold. Additionally, it is possible for these systems to exhibit a super-explosion bifurcation where the canard explosion is skipped. This paper extends the results to more general piecewise-smooth systems, finding conditions for when a periodic orbit is created through either a smooth or nonsmooth bifurcation. In the case the bifurcation is nonsmooth, conditions are found determining whether the bifurcation is a superexplosion or canards are created.
منابع مشابه
Regularizations of Two-Fold Bifurcations in Planar Piecewise Smooth Systems Using Blowup
We use blowup to study the regularization of codimension one two-fold singularities in planar piecewise smooth (PWS) dynamical systems. We focus on singular canards, pseudo-equlibria and limit cycles that can occur in the PWS system. Using the regularization of Sotomayor and Teixeira [30], we show rigorously how singular canards can persist and how the bifurcation of pseudo-equilibria is relate...
متن کاملOn the Limit Cycles of a Class of Planar Singular Perturbed Differential Equations
Relaxation oscillations of two-dimensional planar singular perturbed systems with a layer equation exhibiting canard cycles are studied. The canard cycles under consideration contain two turning points and two jump points. We suppose that there exist three parameters permitting generic breaking at both the turning points and the connecting fast orbit. The conditions of one (resp., two, three) r...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملPlanelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images
With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...
متن کاملCanard-Like Explosion of Limit Cycles in Two-Dimensional Piecewise-Linear Models of FitzHugh-Nagumo Type
We investigate the mechanism of abrupt transition between small and large amplitude oscillationsin fast-slow piecewise-linear (PWL) models of FitzHugh-Nagumo (FHN) type. In the context ofneuroscience, these oscillatory regimes correspond to subthreshold oscillations and action potentials(spikes) respectively. The minimal model that shows such phenomenon has a cubic-like nullclin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 15 شماره
صفحات -
تاریخ انتشار 2016